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Numerical Dispersion and Stability Analysis
of the FDTD Technique in Lossy Dielectrics
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Abstract—Two different extensions of the finite-difference time-
domain (FDTD) method for the treatment of lossy dielectrics are
considered: the time-average (TA) and the time-forward (TF)
difference schemes. An analytical study of the stability properties
and numerical dispersion of these schemes is presented. The
stability analysis is based on the Von Neumann (Fourier series)
method, while the numerical dispersion properties are established
in terms of the numerical permittivity of discrete lossy dielectrics.
The analytical stability limits are compared with those obtained
numerically in previous works. The accuracy of the two schemes
is compared by computing the reflection coefficient of a lossy
dielectric slab.

Index Terms—FDTD method, lossy dielectrics.

I. INTRODUCTION

FIRST proposed for isotropic lossless media, the finite-
difference time-domain (FDTD) method was quickly ex-

tended to lossy dielectrics characterized by a static conduc-
tivity. To apply the FDTD technique to such materials, the
Maxwell–Amṕere equation is completed with a conduction
current term. This term must then be suitability discretized. A
straightforward discretization of this term is not useful because
the electric field must be evaluated at the temporal instants
that correspond to the magnetic field, and this discretization
scheme is not properly staggered. To avoid this difficulty two
different approaches have been proposed for discretizing the
conduction current term: the first approach uses a time average
[1], while the second approach uses forward differences in
time [2]. We will refer to these approaches as the time-average
(TA) and the time-forward (TF) schemes, respectively. Both
techniques have coexisted during the last two decades, but
until now no analytical study of their stability and numerical
dispersion properties has been carried out. Recently, the nu-
merical stability and accuracy properties of a third technique
for treating lossy dielectrics, the exponential time-differencing
method, have been published [3].

This letter presents an analytical study of the numerical
stability conditions and numerical dispersion characteristics
of the TA and TF schemes for the FDTD treatment of lossy
dielectrics. The stability analysis is based on the Von Neumann
method, and the numerical dispersion is analyzed in terms of
the numerical permittivity. To compare the accuracy of the
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two schemes, we consider the computation of the reflection
coefficient of a lossy dielectric slab.

II. THE FDTD TREATMENT OF LOSSY DIELECTRICS

For the sake of brevity and simplicity, instead of working
directly with Maxwell’s equations, we consider the wave
equation for the electric field in a source-free, homogeneous
lossy medium

where is the medium relaxation time. The application of
the standard FDTD scheme leads to the following difference
equations:

(1)

where and denote the central difference operator with
respect to the spatial coordinateand to the time, respectively.
Analogously, and denote the spatial and temporal steps.
The central difference operator with respect to time is defined
as [4]

and thus

This operator is defined analogously for the spatial coordinates.
Note that the above dicretization is not useful because the lossy
term must be evaluated at half time steps, where values are
not available. Two different methods have been described to
avoid this problem: the TA and the TF schemes. By using the
TA scheme, the lossy term of (1) is discretized as

while in the TF scheme, the lossy term of (1) leads to

From the above expressions, it can be seen that the TA scheme
preserves the second-order accuracy of the standard FDTD
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method, while the TF scheme has only first order accuracy
in time.

III. STABILITY ANALYSIS

To investigate the stability condition for the above schemes
by means of the Von Neumann method, the corresponding
difference equations are expressed in the transformed domain.
This leads to a second-degree polynomial in the complex
variable —often called the amplification factor. The condi-
tion for stability is that all the roots of must be inside, or
on, the unit circle in the -plane, . Further details on
the foundations and applicability of the Von Neumann method
can be found in [5].

A. The TA Scheme

For the TA scheme we obtain the following stability poly-
nomial:

where

and , with being the numerical wavenumber in
the direction. We find that, in order to fulfill , the
following stability conditions must be verified:

with . Therefore, the TA scheme has the same stability
limit as the standard FDTD method for lossless media.

B. The TF Scheme

For the TF scheme we obtain the stability polynomial

in this case, we find the following stability conditions:

(2)

and , where

The factor is always greater than one. There-
fore, the stability limit of the TF scheme is greater than the
limit of the standard FDTD method for lossless media by this
factor, whose value depends on the conductivity and the size
of the discretization cell. However, the maximum value of

allowed by (2) is still smaller than that given by the Courant
condition

where is the maximum phase speed in the lossy dielec-
tric.

IV. NUMERICAL DISPERSIONANALYSIS

The numerical dispersion equation can be obtained by
simply evaluating the stability polynomial on the unit circle
of the -plane, that is, by letting .

A. The TA Scheme

For this scheme the numerical dispersion equation reads

(3)

where is the numerical complex permittivity for the TA
scheme, given by

where . It can be observed that the real part of
the complex permittivity is not affected by the discretization
process, and the imaginary part of tends to the analytical
value as the time step tends to zero.

B. The TF Scheme

The numerical dispersion equation obtained for this scheme
has the same form as (3), but with a numerical complex
permittivity given by

In this case, the real part of is affected by the term
hence the relaxation time constant should be resolved well
by the FDTD time step to accurately model the
permittivity of a lossy dielectric by means of the TF scheme.

V. NUMERICAL EXAMPLES

The stability limit of the TF scheme has been studied
previously—from a pure numerical viewpoint—for a one-
dimensional (1-D) case [6]. In Table I, we compare the
maximum time step attainable with the TF scheme
calculated by using (2) with the results obtained previously
[6, Table II]. For the sake of brevity, only the cases with

and are shown, where is the wavelength
in the lossy dielectric at the frequency kHz. Table I
also includes the maximum time steps reachable by the TA
scheme and by the Courant Condition . It can be
seen that the stability limits obtained numerically in [6, Table
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TABLE I
COMPARISON OF THEMAXIMUM TIME STEP ATTAINABLE IN A LOSSY MEDIUM WITH � = �0 AND �x = �

20
, BY MEANS OF:

1) THE TA SCHEME,�a
t ; 2) THE TF SCHEME CALCULATED BY (2), �f

t ; 3) THE TF SCHEME CALCULATED

IN [6, TABLE II], (�f
t )�; AND 4) THE THEORETICAL LIMIT ESTABLISHED BY THE COURANT CONTITION �C

t

Fig. 1. Error in the magnitude of the reflection coefficient for a lossy
dielectric slab, computed by using the TA and the TF schemes with different
time steps.

II] are in good agreement with those established analytically
in this work.

To compare the accuracy of the two schemes, Fig. 1 shows
the relative error in the magnitude of the reflection coefficient
for a lossy dielectric slab immersed in a lossless dielectric
medium. The parameters taken for the lossy slab are

S/m, and its width is . In order
to run the FDTD algorithm at the stability limit of the TF
scheme without instabilities in the lossless dielectric, we have
to take a dielectric constant for the lossless dielectric given
by , in this case we have taken .
Fig. 1 shows three different curves: 1) the dashed line has
been obtained with the TF scheme at its stability limit, i.e. by
taking s; 2) the dotted line has been
computed with the TA scheme at its stability limit, i.e. by
using s; and 3) the solid line has been
calculated with the TF scheme running at the stability limit of
the TA scheme, i.e., by taking . It can be seen that,
running at their respective limits, the TA scheme is much more

accurate than the TF scheme. Furthermore, if the time step in
the TF scheme is reduced to the limit of the TA scheme, the
former gives results with a relative error that is approximately
twice as large as the latter scheme.

VI. CONCLUSION

Analytical stability conditions for the TA and the TF
schemes have been derived. Their numerical dispersion
equations have also been established. The stability conditions
show that, for a given spatial size of the discretization cell,
the TF scheme allows higher values of to be used than
the TA scheme. However, the dispersion analysis shows that
the TF scheme leads to a less accurate characterization of the
permittivity of lossy dielectrics, mainly in situations where

. This is a direct consequence of the fact that the
TF scheme does not preserve, for the truncation error, the
second-order accuracy in time of the standard FDTD method.
We have shown that running at their stability limits, the TA
scheme is much more accurate than the TF scheme. Even if
the time step for the TF scheme is reduced to the TA stability
limit, the TA approach still gives better results. In conclusion,
for the FDTD treatment of lossy dielectrics, the TA scheme
is preferred over the TF scheme.
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