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Numerical Dispersion and Stability Analysis
of the FDTD Technique in Lossy Dielectrics
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Abstract—Two different extensions of the finite-difference time- two schemes, we consider the computation of the reflection
domain (FDTD) method for the treatment of lossy dielectrics are coefficient of a lossy dielectric slab.
considered: the time-average (TA) and the time-forward (TF)

difference schemes. An analytical study of the stability properties
and numerical dispersion of these schemes is presented. The  |l. THE FDTD TREATMENT OF LOSSY DIELECTRICS

stability analysis is based on the Von Neumann (Fourier series)  £q the sake of brevity and simplicity, instead of working
method, while the numerical dispersion properties are established '

in terms of the numerical permittivity of discrete lossy dielectrics. directly with Maxwell's equations, we consider the wave

The analytical stability limits are compared with those obtained €quation for the electric field in a source-free, homogeneous
numerically in previous works. The accuracy of the two schemes lossy medium

is compared by computing the reflection coefficient of a lossy
dielectric slab.
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Index Terms—FDTD method, lossy dielectrics.

wherer = £ is the medium relaxation time. The application of

the standard FDTD scheme leads to the following difference
IRST proposed for isotropic lossless media, the finitequations:

difference time-domain (FDTD) method was quickly ex-
tended to lossy dielectrics characterized by a static conduc- { 1 65 54 82 .
tivity. To apply the FDTD technique to such materials, the | 7. Z A2 T 7A, A? Eo(fp.,nA) =0 (1)
Maxwell-Ampére equation is completed with a conduction p=zy,z
current term. This term must then be SUItablllty discretized. ﬁhere 6,8 and 6t denote the central difference Operator with
straightforward discretization of this term is not useful becauggspect to the spatial coordinatend to the time, respectively.
the electric field must be evaluated at the temporal instamﬁajogougy,Aﬂ andAt denote the Spatia] and tempora] steps.

that correspond to the magnetic field, and this discretizatiqe central difference operator with respect to time is defined
scheme is not properly staggered. To avoid this difficulty twgsg [4]

different approaches have been proposed for discretizing the L L

conduction current term: the first approach uses a time average 6if(nAy) = 6,7 = frrz — 7z

[1], while the second approach uses forward differences g‘tﬁd thus

time [2]. We will refer to these approaches as the time-average

(TA) and the time-forward (TF) schemes, respectively. Both S2fT = &[6, " = frt =2

techniques have coexisted during the last two decades, but , i i i

until now no analytical study of their stability and numericaTh'S operator is defined analogously for the spatial coordinates.

dispersion properties has been carried out. Recently, the Npte that the above dicretization is not useful because the lossy
merical stability and accuracy properties of a third techniqd&™ Must be evaluated at half time steps, where values are

for treating lossy dielectrics, the exponential time-differencing’t available. Two different methods have been described to
method, have been published [3]. void this problem: the TA and the TF schemes. By using the

This letter presents an analytical study of the numericaf* Scheéme, the lossy term of (1) is discretized as

stability conditions and numerical dispersion characteristics
of the TA and TF schemes for the FDTD treatment of lossy
dielectrics. The stability analysis is based on the Von Neumann 5 EZ_%(FE )+ EZJ’% (7g.) )
method, and the numerical dispersion is analyzed in terms of A2 T( = 5 == + O(At)>
the numerical permittivity. To compare the accuracy of the T
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method, while the TF scheme has only first order accuraallowed by (2) is still smaller than that given by the Courant
in time. condition

Ill. STABILITY ANALYSIS 1 1
N

To investigate the stability condition for the above schemes " Upmax
by means of the Von Neumann method, the corresponding
difference equations are expressed in the transformed domatiherev,,_ . is the maximum phase speed in the lossy dielec-
This leads to a second-degree polynon#ték) in the complex tric.
variable Z—often called the amplification factor. The condi-
tion for stability is that all the roots aP(Z) must be inside, or
on, the unit circle in theZ-plane,|Z| < 1. Further details on

the foundations and applicability of the Von Neumann method 1€ numerical dispersion equation can be obtained by
can be found in [5]. simply evaluating the stability polynomial on the unit circle

of the Z-plane, that is, by lettingZ = exp(jwt).

B=z,y,z 0

IV. NUMERICAL DISPERSIONANALYSIS

A. The TA Scheme
. . . A. The TA Scheme
For the TA scheme we obtain the following stability poly-

nomial: For this scheme the numerical dispersion equation reads
A\ o 2 Ay . sin?6 sin? 6
1+ =224+ @?-2)Z+(1-—=)=0 ¢TA L. 8
< +2¢> + (41 )Z + o Sy BZ A2 3
P=Z,Y,z !
where o ) o
) 5 where éT is the numerical complex permittivity for the TA
2 A > sin” 6 scheme, given by
e A2 )
B=z,y,% k gTA . jO’At
andég = % with k4 being the numerical wavenumber in 2tant

the 3 direction. We find that, in order to fulfillZ| < 1, the

. . " - where §, = ©2¢ It can be observed that the real part of
following stability conditions must be verified:

5t
the complex permittivity is not affected by the discretization
-1 process, and the imaginary part&dt* tends to the analytical

1 value as the time step tends to zero.
A < Ve Z Az P
B=zy,z
! B. The TF Scheme
with o > 0. Therefore, the TA scheme has the same stability

o . The numerical dispersion equation obtained for this scheme
limit as the standard FDTD method for lossless media. P g

has the same form as (3), but with a numerical complex

ermittivity given b
B. The TF Scheme P y g y

For the TF scheme we obtain the stability polynomial T _ (1= Ar) _ Jod .
27 2tan 6,
At o 2 Ay _
<1 + 7)Z + <4V —2- T Z+1=0 In this case, the real part ¢fF is affected by the terng,

hence the relaxation time constant should be resolved well
by the FDTD time stegA, <« ) to accurately model the
-1 permittivity of a lossy dielectric by means of the TF scheme.

A < e Z% (A+VA2+1) (2

B=zy,z B V. NUMERICAL EXAMPLES

in this case, we find the following stability conditions:

The stability limit of the TF scheme has been studied

and o > 0, where ) : . .
previously—from a pure numerical viewpoint—for a one-

—3 dimensional (1-D) case [6]. In Table I, we compare the
A= Ver Z LQ . maximum time step attainable with the TF schemémx
4r e A% calculated by using (2) with the results obtained previously

[6, Table Il]. For the sake of brevity, only the cases with
The factor(A + v A2 + 1) is always greater than one. Theree = ¢y and A, = ’2\—6 are shown, wheré... is the wavelength
fore, the stability limit of the TF scheme is greater than thi@ the lossy dielectric at the frequengy = 6 kHz. Table |
limit of the standard FDTD method for lossless media by thalso includes the maximum time steps reachable by the TA
factor, whose value depends on the conductivity and the seehemeA? and by the Courant Conditiof.\fmx. It can be
of the discretization cell. However, the maximum valueXaf seen that the stability limits obtained numerically in [6, Table
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TABLE |

COMPARISON OF THEMAXIMUM TIME STEP ATTAINABLE IN A LOSSY MEDIUM WITH € = €5 AND A, = 20 s
1) THE TA ScHeme, A 2) THE TF ScHEME CALCULATED By (2), Af ; 3) THE TF SCHEME CALCULATED
IN [6, TaBLE lI], (Af

)71 AND 4) THE THEORETICAL LIMIT ESTABLISHED BY THE COURANT CONTITION A$

By MEANS OF:

tmax’

fnnx

o(s/m) ) AL r ol (8L.) o BT
1078 8.85 .653 .768 .723 .941
10-° 8.85- 107} 2.39 4.22 4.07 9.41
107 8.85-1072 7.68 31.4 30.5 94.1
1073 8.85.1073 24.3 298 294 941
107 8.85-10"1% 2.43.10° 2.96-10'2 2.94-10% 9.41-10%
accurate than the TF scheme. Furthermore, if the time step in
the TF scheme is reduced to the limit of the TA scheme, the
05 > former gives results with a relative error that is approximately
5 ; ‘ AV twice as large as the latter scheme.
5 -1.0 | — - :
%-1.5: N — VI. CONCLUSION
&) [
£ \M\[ Analytical stability conditions for the TA and the TF
520 — T Scheme (at s stabliy limiy T schemes have been derived. Their numerical dispersion
E 25 'AiTFScCh:nr?: ((:tt:ktlissltzblilli[l};lli[:rl:itt)ofthe TA scheme) o equations have also been established. The stability conditions
- } ‘ show that, for a given spatial size of the discretization cell,
30 L _ e L the TF scheme allows higher values Af to be used than
0.0 1.0 2.0 3.0 4.0 5.0 6.0 the TA scheme. However, the dispersion analysis shows that
Frequency (KHz) the TF scheme leads to a less accurate characterization of the

ermittivity of lossy dielectrics, mainly in situations where

. = 7. This is a direct consequence of the fact that the
TF scheme does not preserve, for the truncation error, the
second-order accuracy in time of the standard FDTD method.
I] are in good agreement with those established analyticaW/e have shown that running at their stability limits, the TA
in this work. scheme is much more accurate than the TF scheme. Even if

To compare the accuracy of the two schemes, Fig. 1 shothe time step for the TF scheme is reduced to the TA stability
the relative error in the magnitude of the reflection coefficiefimit, the TA approach still gives better results. In conclusion,
for a lossy dielectric slab immersed in a lossless dielectiier the FDTD treatment of lossy dielectrics, the TA scheme
medium. The parameters taken for the lossy slabcarecy, is preferred over the TF scheme.
o = 107% S/m, and its width isd = 200A,. In order
to run the FDTD algorithm at the stability limit of the TF
scheme without instabilities in the lossless dielectric, we have

Fig. 1. Error in the magnitude of the reflection coefficient for a loss
dielectric slab, computed by using the TA and the TF schemes with differ
time steps.
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